Mapping a mouse limbic seizure susceptibility locus on chromosome 10.
نویسندگان
چکیده
PURPOSE Mapping seizure susceptibility loci in mice provides a framework for identifying potentially novel candidate genes for human epilepsy. Using C57BL/6J × A/J chromosome substitution strains (CSS), we previously identified a locus on mouse chromosome 10 (Ch10) conferring susceptibility to pilocarpine, a muscarinic cholinergic agonist that models human temporal lobe epilepsy by inducing initial limbic seizures and status epilepticus (status), followed by hippocampal cell loss and delayed-onset chronic spontaneous limbic seizures. Herein we report further genetic mapping of pilocarpine quantitative trait loci (QTLs) on Ch10. METHODS Seventy-nine Ch10 F(2) mice were used to map QTLs for duration of partial status epilepticus and the highest stage reached in response to pilocarpine. Based on those results we created interval-specific congenic lines to confirm and extend the results, using sequential rounds of breeding selectively by genotype to isolate segments of A/J Ch10 genome on a B6 background. KEY FINDINGS Analysis of Ch10 F(2) genotypes and seizure susceptibility phenotypes identified significant, overlapping QTLs for duration of partial status and severity of pilocarpine-induced seizures on distal Ch10. Interval-specific Ch10 congenics containing the susceptibility locus on distal Ch10 also demonstrated susceptibility to pilocarpine-induced seizures, confirming results from the F(2) mapping population and strongly supporting the presence of a QTL between rs13480781 (117.6 Mb) and rs13480832 (127.7 Mb). SIGNIFICANCE QTL mapping can identify loci that make a quantitative contribution to a trait, and eventually identify the causative DNA-sequence polymorphisms. We have mapped a locus on mouse Ch10 for pilocarpine-induced limbic seizures. Novel candidate genes identified in mice can be investigated in functional studies and tested for their role in human epilepsy.
منابع مشابه
Quantitative trait locus for seizure susceptibility on mouse chromosome 5 confirmed with reciprocal congenic strains.
Multiple quantitative trait locus (QTL) mapping studies designed to localize seizure susceptibility genes in C57BL/6 (B6, seizure resistant) and DBA/2 (D2, seizure susceptible) mice have detected a significant effect originating from midchromosome 5. To confirm the presence and refine the position of the chromosome 5 QTL for maximal electroshock seizure threshold (MEST), reciprocal congenic str...
متن کاملGenetic epilepsy model derived from common inbred mouse strains.
The recombinant inbred mouse strain, SWXL-4, exhibits tonic-clonic and generalized seizures similar to the commonest epilepsies in humans. In SWXL-4 animals, seizures are observed following routine handling at about 80 days of age and may be induced as early as 55 days by rhythmic gentle tossing. Seizures are accompanied by rapid, bilateral high frequency spike cortical discharges and followed ...
متن کاملMalaria Liver Stage Susceptibility Locus Identified on Mouse Chromosome 17 by Congenic Mapping
Host genetic variants are known to confer resistance to Plasmodium blood stage infection and to control malaria severity both in humans and mice. This work describes the genetic mapping of a locus for resistance to liver stage parasite in the mouse. First, we show that decreased susceptibility to the liver stage of Plasmodium berghei in the BALB/c mouse strain is attributable to intra-hepatic f...
متن کاملMapping loci for pentylenetetrazol-induced seizure susceptibility in mice.
DBA/2J (D2) and C57BL/6J (B6) mice exhibit differential sensitivity to seizures induced by various chemical and physical methods, with D2 mice being relatively sensitive and B6 mice relatively resistant. We conducted studies in mature D2, B6, F1, and F2 intercross mice to investigate behavioral seizure responses to pentylenetetrazol (PTZ) and to map the location of genes that influence this tra...
متن کاملQTL mapping of heading date and plant height in Barley cross “Azumamugi”דKanto Nakate Gold
To identify quantitative trait loci (QTLs) controlling heading date and plant height, ninety nine F13 recombinant inbred lines (RILs) derived from barley cultivars Azumamugi × Kanto Nakate Gold cross were evaluated. The field trails were conducted at randomized complete block design with two and three replications in 2004 and 2005, respectively. Significant differences and transgrassive segrega...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Epilepsia
دوره 52 11 شماره
صفحات -
تاریخ انتشار 2011